De‐Tuning Albedo Parameters in a Coupled Climate Ice Sheet Model to Simulate the North American Ice Sheet at the Last Glacial Maximum

Author:

Gandy N.12ORCID,Astfalck L. C.13,Gregoire L. J.1ORCID,Ivanovic R. F.1ORCID,Patterson V. L.1ORCID,Sherriff‐Tadano S.1,Smith R. S.4ORCID,Williamson D.56,Rigby R.17ORCID

Affiliation:

1. School of Earth and Environment The University of Leeds Leeds UK

2. Now at Department of Natural and Built Environment Sheffield Hallam University Sheffield UK

3. School of Physics, Mathematics and Computing The University of Western Australia WA Perth Australia

4. NCAS Department of Meteorology University of Reading Reading UK

5. Exeter University Exeter UK

6. The Alan Turing Institute London UK

7. Centre for Environmental Modelling and Computation University of Leeds Leeds UK

Abstract

AbstractThe Last Glacial Maximum extent of the North American Ice Sheets is well constrained empirically but has proven to be challenging to simulate with coupled Climate‐Ice Sheet models. Coupled Climate‐Ice Sheet models are often too computationally expensive to sufficiently explore uncertainty in input parameters, and it is unlikely that values calibrated to reproduce modern ice sheets will reproduce the known extent of the ice at the Last Glacial Maximum. To address this, we run an ensemble with a coupled Climate‐Ice Sheet model (FAMOUS‐ice), simulating the final stages of growth of the last North American Ice Sheets' maximum extent. Using this large ensemble approach, we explore the influence of numerous uncertain ice sheet albedo, ice sheet dynamics, atmospheric, and oceanic parameters on the ice sheet extent. We find that ice sheet albedo parameters determine the majority of uncertainty when simulating the Last Glacial Maximum North American Ice Sheets. Importantly, different albedo parameters are needed to produce a good match to the Last Glacial Maximum North American Ice Sheets than have previously been used to model the contemporary Greenland Ice Sheet due to differences in cloud cover over ablation zones. Thus, calibrating coupled climate‐ice sheet models on one ice sheet may produce strong biases when the model is applied to a new domain.

Funder

UK Research and Innovation

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3