Predicting Barrier Island Shrub Presence Using Remote Sensing Products and Machine Learning Techniques

Author:

Franklin Benton1ORCID,Moore Laura J.1ORCID,Zinnert Julie C.2

Affiliation:

1. Department of Earth, Marine and Environmental Sciences University of North Carolina at Chapel Hill Chapel Hill NC USA

2. Department of Biology Virginia Commonwealth University Richmond VA USA

Abstract

AbstractBarrier islands are highly dynamic coastal landforms that are economically, ecologically, and societally important. Woody vegetation located within barrier island interiors can alter patterns of overwash, leading to periods of periodic‐barrier island retreat. Due to the interplay between island interior vegetation and patterns of barrier island migration, it is critical to better understand the factors controlling the presence of woody vegetation on barrier islands. To provide new insight into this topic, we use remote sensing data collected by LiDAR, LANDSAT, and aerial photography to measure shrub presence, coastal dune metrics, and island characteristics (e.g., beach width, island width) for an undeveloped mixed‐energy barrier island system in Virginia along the US mid‐Atlantic coast. We apply decision tree and random forest machine learning methods to identify new empirical relationships between island geomorphology and shrub presence. We find that shrubs are highly likely (90% likelihood) to be present in areas where dune elevations are above ∼1.9 m and island interior widths are greater than ∼160 m and that shrubs are unlikely (10% likelihood) to be present in areas where island interior widths are less than ∼160 m regardless of dune elevation. Our machine learning predictions are 90% accurate for the Virginia Barrier Islands, with almost half of our incorrect predictions (5% of total transects) being attributable to system hysteresis; shrubs require time to adapt to changing conditions and therefore their growth and removal lags changes in island geomorphology, which can occur more rapidly.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3