Experimental Investigation on Scouring v.s. Mass Failure of Unsaturated Soil Bed: Implications for Debris Flow Initiation and Erosion

Author:

Song Pengjia1ORCID,Yang Jun1ORCID,Choi Clarence Edward1ORCID,Zhang Jiaqi1ORCID

Affiliation:

1. Department of Civil Engineering The University of Hong Kong, HKSAR Hong Kong China

Abstract

AbstractScouring and mass failure are two common mechanisms used to describe soil bed erosion, but their combined effects are often not considered. To better understand how these mechanisms compete and under what conditions they prevail, it is essential to consider infiltration and a more realistic unsaturated soil bed. This study investigates soil bed erosion by considering unsaturated soil mechanics, a wetting front, and both erosion mechanisms of scouring and mass failure. Physical experiments were conducted on model water runoff over an unsaturated sand bed to investigate the effects of soil water content and flow velocity on erosion. Experimental results show that current understanding of soil bed erosion can be enhanced by adopting unsaturated soil mechanics and considering the combined effects of scouring and mass failure. The scouring rate is found to be independent of the bed water content because it only affects the uppermost soil particles, which immediately become saturated once water flows over them. Mass failure, on the other hand, is initiated at the wetting front when the rate of infiltration exceeds that of scouring. The depth of mass failure can be described by the net infiltration depth, which is defined as the difference between the infiltration and scouring depths. The net infiltration depth is jointly governed by the soil water content and flow velocity. The crucial role of the coupled effects of the hydro‐mechanical behavior of unsaturated soil in the realistic modeling of soil bed erosion is demonstrated. Outcomes present advancement toward improved hazard assessments of debris flows.

Funder

Research Grants Council, University Grants Committee

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3