Subglacial Discharge Accelerates Dynamic Retreat of Aurora Subglacial Basin Outlet Glaciers, East Antarctica, Over the 21st Century

Author:

Pelle T.1ORCID,Greenbaum J. S.1ORCID,Ehrenfeucht S.2ORCID,Dow C. F.2ORCID,McCormack F. S.3ORCID

Affiliation:

1. Scripps Institution of Oceanography University of California, San Diego La Jolla CA USA

2. Department of Geography and Environmental Management University of Waterloo Waterloo ON Canada

3. School of Earth, Atmosphere & Environment Securing Antarctica's Environmental Future Monash University Clayton VIC Australia

Abstract

AbstractRecent studies have revealed the presence of a complex freshwater system underlying the Aurora Subglacial Basin (ASB), a region of East Antarctica that contains ∼7 m of global sea level potential in ice mainly grounded below sea level. However, the impact that subglacial freshwater has on driving the evolution of the dynamic outlet glaciers that drain this basin has yet to be tested in a coupled ice sheet‐subglacial hydrology numerical modeling framework. Here, we project the evolution of the primary outlet glaciers draining the ASB (Moscow University Ice Shelf, Totten, Vanderford, and Adams Glaciers) in response to an evolving subglacial hydrology system and to ocean forcing through 2100, following low and high CMIP6 emission scenarios. By 2100, ice‐hydrology feedbacks enhance the ASB's 2100 sea level contribution by ∼30% (7.50–9.80 mm) in high emission scenarios and accelerate the retreat of Totten Glacier's main ice stream by 25 years. Ice‐hydrology feedbacks are particularly influential in the retreat of the Vanderford and Adams Glaciers, driving an additional 10 km of retreat in fully coupled simulations relative to uncoupled simulations. Hydrology‐driven ice shelf melt enhancements are the primary cause of domain‐wide mass loss in low emission scenarios, but are secondary to ice sheet frictional feedbacks under high emission scenarios. The results presented here demonstrate that ice‐subglacial hydrology interactions can significantly accelerate retreat of dynamic Antarctic glaciers and that future Antarctic sea level assessments that do not take these interactions into account might be severely underestimating Antarctic Ice Sheet mass loss.

Funder

Earth Sciences Division

National Science Foundation

Natural Sciences and Engineering Research Council of Canada

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3