Affiliation:
1. University Grenoble Alpes INRAE CNRS IRD Grenoble INP IGE Grenoble France
2. BGC Engineering Inc. Vancouver BC Canada
3. GINGER BURGEAP R&D Grenoble France
4. Department of Geological Risks and Climate Change IGME CSIC Madrid Spain
5. EDF Hydro, Division Technique Générale (DTG) Saint‐Martin‐le‐Vinoux France
6. Office Français de la Biodiversité Vincennes France
Abstract
AbstractBedload transport can fluctuate considerably over relatively short periods of time and for a given quasi‐constant flow rate. What are the implications of replacing the fluctuating signal with a smoothed signal when calculating bedload transport using averaged values, as is common practice? This question was investigated with the BedloadR code, which allows 1D bedload calculation as well as Monte Carlo simulations using a new data set collected in the Severaisse River (French Ecrins massif). Four bedload equations (Camenen & Larson, 2005, https://doi.org/10.1016/j.ecss.2004.10.019; Meyer‐Peter & Mueller, 1948; Parker, 1990, https://doi.org/10.1080/00221689009499058; Recking, 2013a, https://doi.org/10.1061/(asce)hy.1943‐7900.0000653) were selected for their performance relative to the measured bedload (except for and Meyer‐Peter and Mueller) and because each equation has a different mathematical form and degree of nonlinearity. They were used in a Monte Carlo approach, with input probability distributions fitted to the measured river width, slope, bed grain‐size distribution, and to the associated (computed) Shields stress. The results show that accounting for natural variability in the calculation reproduces bedload fluctuations well. But overall, when calculating the bedload volume transported by a flow event, accounting for variability systematically leads to higher estimated volumes (of the order of 20%) than those obtained with a deterministic approach using average input parameters. This is a direct consequence of the nonlinearity of the equations.
Funder
Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement
Office Français de la Biodiversité
Consejo Superior de Investigaciones Científicas
Ministerio de Ciencia, Innovación y Universidades
Publisher
American Geophysical Union (AGU)
Reference114 articles.
1. Bedload transport: A walk between randomness and determinism 1. The state of the art;Ancey C.;Journal of Hydraulic Research,2019
2. Bedload transport: A walk between randomness and determinism 2.Challenges and prospects;Ancey C.;Journal of Hydraulic Research,2019
3. A microstructural approach to bed load transport: mean behaviour and fluctuations of particle transport rates