10Be Exposure Age Dating of Moraine Boulders and Glacially Polished Bedrock Surfaces in Karakoram and Ladakh Ranges, NW Himalaya: Implications in Quaternary Glaciation Studies

Author:

Jena Partha Sarathi123ORCID,Bhushan Ravi1,Sharma Shubhra1,Dabhi Ankur J.1,Ajay Shivam1,Raj Harsh14,Juyal Navin15

Affiliation:

1. Geosciences Division Physical Research Laboratory Ahmedabad India

2. Indian Institute of Technology Gandhinagar India

3. Now at School of Arts, Sciences and Humanities (EACH) University of Sao Paulo Sao Paulo Brazil

4. Now at Weizmann Institute of Science Rehovot Israel

5. Now at Kabir Enclave Ahmedabad India

Abstract

AbstractTerrestrial cosmogenic nuclide (TCN) dating has emerged as one of the most useful techniques in the last two decades for quantifying geomorphological processes and building the chronology of late Quaternary glacial advances/retreats. The chronology based on TCN and optically stimulated luminescence (OSL) dating of glacial landforms from the northwestern (NW) Himalaya suggests that glaciers responded to a complex interaction between temperature and moisture essentially derived from either of the climate systems, the Indian Summer Monsoon (ISM) and the Mid‐latitude Westerlies (MLW). The discrepancies between the TCN ages obtained on moraine boulders/bedrock surfaces, and the OSL ages on the stratigraphically equivalent deposits, highlighted the need for a detailed investigation. The present study attempts to build the chronology of Quaternary glaciation events in the Karakoram and Ladakh Ranges using TCN dating of stratigraphically constrained moraine boulders and striated bedrock surfaces. The TCN ages from glacially eroded surfaces (GES) having prominent striations are narrowly clustered around the Marine Isotopic Stage‐2 (MIS‐2). Agreement between GES TCN ages and OSL ages on the stratigraphically equivalent moraines suggests negligible geological inheritance. The glacial advance during MIS‐2 can be attributed to the combined effect of reduction in north hemispheric insolation and enhanced westerly precipitation. However, relict non‐glacial surfaces and moraine boulders with minimal ice flow modifications yield wide age distributions, most likely suggesting denudational events (interglacials) and/or contribution from tributary valley flanks.

Funder

Physical Research Laboratory

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3