Affiliation:
1. Department of Geomorphology Faculty of Geography and Regional Studies University of Warsaw Warszawa Poland
2. Faculty of Geographical and Geological Sciences Institute of Geology Adam Mickiewicz University in Poznań Poznań Poland
3. Beach and Dune Systems (BEADS) Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
Abstract
AbstractThis study presents an analysis of wind flow and sediment transport from the beach up a 50 m high, long (130 m), steep (mean slope 26°) climbing dune and across a 1.5 m high max, 85 m long and 17.5 m wide clifftop dune 30 km south of Dakhla in Morocco, NW Africa, during highly oblique incident wind conditions. Multiple 2D sonic and cup/vane anemometers and sand traps were utilized for measurements. Flow steering was significant on the upper climbing dune. Flow deceleration occurred near the dune toe, and topographic forcing of flow was considerable on the upper slopes of the climbing dune. Near‐surface flow steadiness (CVU1, CVU0.25) on the climbing dune straight slope segment was low and constant. The distance upslope over which the airflow reached a speed comparable to that on the beach increases as the incident wind speed increases. The greatest flow acceleration and speed‐up was observed at the cliff edge reaching 250% at 1 m height and 220% at 0.25 m height for the lowest incident wind speed class (4–5 m/s). The sand transport rate declined from the beach to the climbing dune toe and lower slope, but at the uppermost section of the climbing dune was 4 times higher than in the beach for the 7–8 m/s incident wind speed. Sand in aeolian transport was generally finer than surface sand, with the mean grain size increasing up the slope. A comparison of the sand transport data collected with sand transport models, and the effects of slope on Aeolian transport are also examined.
Publisher
American Geophysical Union (AGU)
Subject
Earth-Surface Processes,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献