A Mechanistic Model and Experiments on Bedrock Incision and Channelization by Rockfall

Author:

Beer A. R.12ORCID,Fischer J. N.23,Ulizio T. P.1,Ma Z.24ORCID,Sun Z.25,Lamb M. P.2ORCID

Affiliation:

1. University of Tübingen Tübingen Germany

2. California Institute of Technology Pasadena CA USA

3. Massachusetts Institute of Technology Cambridge MA USA

4. University of Illinois Urbana‐Champaign Urbana IL USA

5. College of Marine Science and Technology China University of Geosciences Wuhan China

Abstract

AbstractRockfall and rock avalanches are common in steep terrain on Earth and potentially on other planetary bodies such as the Moon and Mars. Since impacting rocks can damage exposed bedrock as they roll and bounce downhill, rockfall might be an important erosive agent in steep landscapes, even in the absence of water. We developed a new theory for rockfall‐driven bedrock abrasion using the ballistic trajectories of rocks transported under gravity. We calibrated this theory using laboratory experiments of rockfall over an inclined bedrock simulant. Both the experiments and the model demonstrate that bedrock hillslopes can be abraded by dry rockfall, even at gradients below the angle of repose, depending on the bedrock roughness. Feedback between abrasion and topographic steering of rockfall can produce channel‐like forms, such as bedrock chutes, in the absence of water. Particle size has a dominant influence on abrasion rates and runout distances, while the hillslope angle has a comparatively minor influence. Rockfall transport is sensitive to bedrock roughness; terrain with high friction angles can trap rocks creating patches of rock cover that affect subsequent rockfall pathways. Our results suggest that dry rockfall can play an important role in eroding and channelizing steep, rocky terrain on Earth and other planets, such as crater degradation on the Moon and Mars.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Earth Sciences Division

China Scholarship Council

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3