Modeling Cosmogenic Nuclides in Transiently Evolving Topography and Chemically Weathering Soils

Author:

Reed Miles M.1ORCID,Ferrier Ken L.1ORCID,Perron J. Taylor2ORCID

Affiliation:

1. Department of Geoscience University of Wisconsin‐Madison Madison WI USA

2. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

Abstract

AbstractTerrestrial cosmogenic nuclides (TCN) are widely employed to infer denudation rates in mountainous landscapes. The calculation of an inferred denudation rate (Dinf) from TCN concentrations is typically performed under the assumptions that denudation rates were steady during TCN accumulation and that soil chemical weathering negligibly impacted soil mineral abundances. In many landscapes, however, denudation rates were not steady and soil composition was significantly impacted by chemical weathering, which complicates interpretation of TCN concentrations. We present a landscape evolution model that computes transient changes in topography, soil thickness, soil mineralogy, and soil TCN concentrations. We used this model to investigate TCN responses in transient landscapes by imposing idealized perturbations in tectonically (rock uplift rate) and climatically sensitive parameters (soil production efficiency, hillslope transport efficiency, and mineral dissolution rate) on initially steady‐state landscapes. These experiments revealed key insights about TCN responses in transient landscapes. (a) Accounting for soil chemical erosion is necessary to accurately calculate Dinf. (b) Responses of Dinf to tectonic perturbations differ from those to climatic perturbations, suggesting that spatial and temporal patterns in Dinf are signatures of perturbation type and magnitude. (c) If soil chemical erosion is accounted for, basin‐averaged Dinf inferred from TCN in stream sediment closely tracks actual basin‐averaged denudation rate, showing that Dinf is a reasonable proxy for actual denudation rate, even in many transient landscapes. (d) Response times of Dinf to perturbations increase with hillslope length, implying that response times should be sensitive to the climatic, biological, and lithologic processes that control hillslope length.

Publisher

American Geophysical Union (AGU)

Subject

Earth-Surface Processes,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3