Tying Shock Features to Impact Conditions: The Significance of Shear Deformation During Impact Cratering

Author:

Alwmark S.1ORCID

Affiliation:

1. Department of Geology Lund University Lund Sweden

Abstract

AbstractImpact cratering is associated with extreme physical conditions with temperatures and pressures far exceeding conditions otherwise prevailing at the surfaces of terrestrial planets. As a consequence, shock‐metamorphosed rocks contain unique deformation features such as planar deformation features in quartz, high‐pressure mineral polymorphs and melted rock. While the physical conditions of formation for impact‐induced melting following the highest pressure and temperature conditions is relatively well understood, aspects of the formation of melt‐veins in otherwise seemingly relatively low shock material has been the topic of discussion. In a new study, Hamann et al. (2023, https://doi.org/10.1029/2023JE007742) are able to largely reproduce the current classification of progressive shock metamorphism of felsic rocks using a modern experimental set up that eliminates multiple shock wave reflections at sample containers and excavation and ejection of target material. Importantly, however, they find that shear deformation results in the formation of melt veins at pressures as low as 6 GPa. The authors recover stishovite in melt veins formed at low‐moderate (<18 GPa) shock pressure, lower than most previous studies. These results have bearing on our understanding of the conditions of progressive shock metamorphism at terrestrial impact structures. However, since the results are similar to data obtained from experiments on basaltic rocks, the results also have broader implications for understanding the shock histories of meteorite parent bodies. Hamann et al. show the importance of experimental impact cratering for bridging the gap between observations in shocked rocks from terrestrial impact structures, in meteorites, and in returned samples, and their formational conditions.

Funder

Vetenskapsrådet

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3