Paleo‐Evolution of Martian Subsurface Ice and Its Role in the Polar Physical and Isotopic Layering

Author:

Vos E.1ORCID,Aharonson O.12ORCID,Schörghofer N.2ORCID,Forget F.3,Lange L.3ORCID,Millour E.3

Affiliation:

1. Department of Earth & Planetary Sciences Weizmann Institute of Science Rehovot Israel

2. Planetary Science Institute Tucson AZ USA

3. Laboratoire de Météorologie Dynamique/IPSL Sorbonne Université ENS PSL Research University Ecole Polytechnique CNRS Paris France

Abstract

AbstractMars harbors ice deposits in several forms, on the surface and in the subsurface, which exchange with each other on various timescales. We seek to study the pore ice evolution over millennial time scales and how it contributes to and affects the Polar cap's evolution. We calculate the evolution of SubSurface Ice (SSI) pore filling by coupling two models, the Mars LMD Global Climate Model, which calculates the atmospheric and surface evolution on an annual timescale, and the dynamical version of the Mars Subsurface Ice Model, which calculates the evolution of the SSI on a millennial timescale. The SSI latitudinal boundary fluctuates over more than 25° in one obliquity cycle, overall extending equatorward of latitude ±35° at high obliquity, and receding to about ±60° at low obliquity. In locations where the SSI is stable continuously over orbital cycles, the simulations predict layering caused by a sublimation front at the SSI top boundary. Between 5 and 2.5 Myr ago, the subsurface lost at least ∼95 m of polar equivalent layer ice. The SSI flux routinely reaches ∼1 mm/Mars year. In addition to the direct contribution to the growth of the North Polar Layered Deposits (NPLD), the SSI causes variations in the NPLD accumulation rate due to the changes in the SSI distribution that affect the seasonal energy budget. These variations are comparable to the change in rate due to variations in orbital elements. When running paleo‐climate simulations, particularly to reconstruct the NPLD profile, changes in the SSI distribution should be considered.

Funder

Minerva Foundation

European Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3