Planetary‐Scale Wave Activity in Venus Cloud Layer Simulated by the Venus PCM

Author:

Lai Dexin123,Lebonnois Sebastien3,Li Tao12ORCID

Affiliation:

1. CAS Key Laboratory of Geospace Environment School of Earth and Space Sciences University of Science and Technology of China Hefei China

2. CAS Center for Excellence in Comparative Planetology University of Science and Technology of China Hefei China

3. Laboratoire de Météorologie Dynamique (LMD/IPSL) Sorbonne Université ENS PSL Research University Ecole Polytechnique Institut Polytechnique de Paris CNRS Paris France

Abstract

AbstractThe Venus atmosphere Superrotation (SR) is successfully simulated with the high‐resolution (1.25° × 1.25° in longitude and latitude) runs of the Venus Planetary Climate Model (PCM). The results show a clear spectrum and structure of atmospheric waves, primarily with periods of 5.65 and 8.5 days. The simulation reproduces long‐term quasi‐periodic oscillation of the zonal wind and primary planetary‐scale wave seen in observations. These oscillations occur with a period of 163–222 days, although their existence is still debated in observations. The Rossby waves show similarity in wave characteristics and angular momentum (AM) transport due to Rossby‐Kelvin instability by comparing the 5.65‐day wave in Venus PCM with the 5.8‐day wave simulated by AFES‐Venus, another Venus General Circulation Model. Similarities are also evident between the 8.5‐day wave in Venus PCM and the 7‐day wave obtained in AFES‐Venus. The long‐term variations in the AM budget indicate that the 5.65‐day wave is the dominant factor of the oscillation on the SR, and the 8.5‐day wave plays a secondary role. When the 5.65‐day wave grows, its AM and heat transport are enhanced and accelerate (decelerate) the lower‐cloud equatorial jet (cloud‐top mid‐latitude jets). Meanwhile, the 8.5‐day wave weakens, reducing its deceleration effect on the lower‐cloud equator. This further suppresses the meridional gradient of the background wind and weakens instability, leading to the decay of the 5.65‐day wave. And vice versa when the 5.65‐day wave decays.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3