A New Mechanism for Stishovite Formation During Rapid Compression of Quartz and Implications for Asteroid Impacts

Author:

Otzen Christoph123ORCID,Liermann Hanns‐Peter1ORCID,Langenhorst Falko24

Affiliation:

1. Deutsches Elektronen‐Synchrotron DESY Hamburg Germany

2. Institute of Geoscience Friedrich‐Schiller‐University Jena Jena Germany

3. Now at Institute of Earth and Environmental Sciences University of Freiburg Freiburg Germany

4. School of Ocean and Earth Science and Technology Hawai’I Institute of Geophysics and Planetology University of Hawai'i at Manoa Honolulu HI USA

Abstract

AbstractShock‐induced transformations of quartz to high‐pressure polymorphs and diaplectic glass are decisive in identifying impact cratering events. Under shock compression, quartz can melt in local hot spots and crystallization of these silica melts under pressure can yield the high‐pressure mineral stishovite. A solid‐state transition to stishovite in relation to the formation of amorphous lamellae was already suggested in the late 1960s, but this idea was never comprehensively proven. Therefore, the mechanism responsible for such an intracrystalline stishovite formation is unknown to date. Herein, crystallographically oriented single crystals of quartz were compressed and decompressed in a membrane‐driven diamond anvil cell. These experiments aim at simulating the pressure paths of natural impacts on the timescale of seconds using compression rates between 0.2 and 0.6 GPa/s and peak pressures between 20 and 37 GPa. During the compression of quartz, the time‐resolved synchrotron X‐ray diffraction patterns reveal the almost simultaneous formation of two high‐pressure polymorphs, the recently identified rosiaite‐structured silica and stishovite. Transmission electron microscopic observations of recovered samples show that stishovite occurs as arrays of uniformly oriented nanometer‐sized crystals in amorphous intracrystalline lamellae. These observations indicate that the numerous stishovite crystals likely nucleated from the structurally similar rosiaite phase and thus inherited their uniform orientation during compression. During decompression, the metastable and non‐quenchable rosiaite‐structured phase collapsed to the amorphous stishovite‐containing lamellae. These findings attest to a novel mechanism of the formation of stishovite in the solid state and provide an explanation for similar microstructural occurrences of stishovite in impact‐metamorphic rocks and shocked meteorites.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3