Mapping the Seismicity of Mars With InSight

Author:

Ceylan S.1ORCID,Giardini D.1ORCID,Clinton J. F.2ORCID,Kim D.1,Khan A.13ORCID,Stähler S. C.14ORCID,Zenhäusern G.1ORCID,Lognonné P.5ORCID,Banerdt W. B.6ORCID

Affiliation:

1. Institute of Geophysics ETH Zurich Zurich Switzerland

2. Swiss Seismological Service ETH Zurich Zurich Switzerland

3. Institute of Geochemistry and Petrology ETH Zurich Zurich Switzerland

4. Physik‐Institut University of Zurich Zurich Switzerland

5. Université Paris Cité Institut de Physique du Globe de Paris CNRS Paris France

6. Jet Propulsion Laboratory California Institute of Technology Pasadena CA USA

Abstract

AbstractThe InSight seismometers have recorded more than 1,300 events. Ninety‐eight of these, named the low‐frequency (LF) family, show energy predominantly below 1 Hz down to ∼0.1 Hz. The Marsquake Service identified seismic phases and computed distances for 42 of these marsquakes, 24 of which have backazimuths. Hence, the locations of the majority of LF family events remain undetermined. Here, we use an envelope shape similarity approach to determine event classes and distances, and introduce an alternative method to estimate the backazimuth. In our analysis, we use the highest quality marsquakes with known distances as templates, including the largest event S1222a, and assign new distances to similar group of events for which distance estimates were not previously available. We find the Tharsis region to be more active than initially perceived on the basis of 5 newly located events near Valles Marineris and Olympus Mons. We relocate two marsquakes with little or no S‐wave energy in the NE of the Elysium Bulge. The event epicenters in Cerberus Fossae follow a north‐south trend due to uncertainties in location, while the fault system is in the NW‐SE direction; therefore, these events are re‐projected along the observed fault system based on our interpretations. The marsquakes in our interpreted catalog are predominantly observed in the northern hemisphere of Mars above the equatorial dichotomy boundary.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3