Low But Persistent Organic Carbon Content of Hyperarid River Deposits and Implications for Ancient Mars

Author:

Kalucha H.1ORCID,Douglas M. M.1ORCID,Lamb M. P.1ORCID,Ke Y.1,Fischer W. W.1

Affiliation:

1. Department of Geological and Planetary Sciences California Institute of Technology Pasadena CA USA

Abstract

AbstractMars has many well‐exposed fluvial ridges and fluvio‐deltaic basins; in two of these locations, the Curiosity and Perseverance rovers are currently searching for signs of habitability. The distribution of organic carbon that might persist in ancient fluvial deposits present on Mars is not well understood. In this study, we set out to assess the preservation potential of organic carbon in a hyperarid fluvial environment with observations and analyses of the Amargosa River in Death Valley, California (United States). The lower reaches of the Amargosa River in Badwater Basin are nearly devoid of plants and contain low gradient, meandering channels, making them a valuable terrestrial analog for early martian fluvial systems. We analyzed sediment taken from fluvial deposits exposed in cutbanks of two bends of a meandering channel. We found total organic carbon abundances that were on average 0.15% up to a meter below the surface. X‐ray diffraction and electron microscopy analyses revealed a suite of high redox potential mineral phases (including iron and manganese oxides) mixed with detrital and authigenic silicates, carbonate, and sulfate salts at or close to redox equilibrium with pore fluids in contact with the atmosphere. This finding highlighted that organic carbon can persist in fluvial deposits at low abundance despite oxidizing conditions and saturated sediments and suggested that ancient fluvial deposits on Mars may retain traces of organics in fine‐grained deposits if they are present during deposition.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3