Affiliation:
1. NASA Goddard Space Flight Center Greenbelt MD USA
2. University of Maryland Baltimore County Catonsville MD USA
3. Center for Research and Exploration in Space Science and Technology II NASA GSFC Greenbelt MD USA
4. Space Science Institute Boulder CO USA
5. Aeolis Research Pasadena CA USA
6. Johns Hopkins University Baltimore MD USA
Abstract
AbstractMartian dust lifting is believed to occur through two primary mechanisms: dust devils and wind stress forced dust lifting. Gale Crater's varied terrain and meteorology provide a unique in situ perspective on Martian dust lifting, with the Mars Science Laboratory Curiosity rover passing through both conditions and locations detrimental to dust lifting (e.g., the crater floor) and those with active sand motion and frequent dust lifting (e.g., the Bagnold Dunes). Between Ls = 248° in Mars Year 33 and Ls = 51° in Mars Year 37, over ∼3.5 Mars years and 2,300 sols, the rover's Navigation Cameras took 1,260 dedicated image sequences to search for dust lifting. Approximately 42.7% of all sequences, and 9.5% of the total images have shown active dust lifting, both dust devils and linear/straight‐line wind stress dust lifting. 79% of dust lifting events are classified as dust devils, while ∼16% are linear wind stress dust lifting and the remainder are of an indeterminate type. We analyze this large catalog of dust lifting events to provide ground truth on theoretical and model expectations of dust lifting and show that dust lifting in Gale Crater occurs throughout the Martian year, is strongly peaked in frequency near solar noon (even after accounting for observational biases), and that dust lifting shows an affinity for sand‐covered surfaces which highlights the importance of saltating sand grains for Martian dust lifting in both dust devils and wind stress forced lifting.
Funder
Planetary Science Division
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献