The Apollo 17 Regolith: Induced Thermoluminescence Evidence for Formation by a Single Event ∼100 Million Years Ago and Possibly the Presence of Tycho Material

Author:

Sehlke A.12ORCID,Sears D. W. G.12ORCID,

Affiliation:

1. NASA Ames Research Center Moffett Field CA USA

2. Bay Area Environmental Research Institute Moffett Field CA USA

Abstract

AbstractWe explored the geological history of the Taurus‐Littrow Valley at the Apollo 17 landing site through the induced thermoluminescence (TL) properties of regolith samples collected from the foothills of the Northern and Southern Massifs, from near the landing site, and from the deep drill core taken in proximity to the landing site. The samples were recently made available by NASA through the Apollo Next Generation Sample Analysis program in anticipation of the forthcoming Artemis missions. We found that the two samples from the foothills of the massifs exhibit induced TL values approximately four times higher than those of the valley samples. This observation is consistent with their elevated plagioclase content, indicating their predominantly highland material composition. Conversely, the valley samples display induced TL values characteristic of lunar mare material. The samples from the deep drill core demonstrate uniformly induced TL properties, despite originating from depths of up to 3 m. Notably, one of the samples from the lower section of the deep drill core presents anomalous‐induced TL readings. This anomaly coincides with elevated levels of low‐potassium KREEP along with reduced quantities of anorthositic gabbro and orange glass, and could be due to the traces of phosphate minerals. Alternatively, this observation raises the possibility that this sample contains Tycho impact material. The induced TL data is consistent with the regolith, extending to a depth of at least 3 m, having been deposited by a singular event approximately 100 million years ago. This timing aligns with the hypothesized formation of the Tycho crater.

Funder

Planetary Science Division

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3