Thin Ice Lithospheres and High Heat Flows on Europa From Large Impact Structure Ring‐Graben

Author:

Singer K. N.1ORCID,McKinnon W. B.2ORCID,Schenk P. M.3ORCID

Affiliation:

1. Southwest Research Institute Boulder CO USA

2. Department of Earth, Environmental, and Planetary Sciences McDonnell Center for Space Sciences Washington University in St. Louis Saint Louis MO USA

3. Lunar and Planetary Institute Houston TX USA

Abstract

AbstractCraters are probes of planetary surface and interior properties. Here we measure depths, widths, and spacing of circumferential ring‐graben surrounding the two largest multiring impact structures on Europa, Tyre and Callanish. We estimate formation conditions including the ice shell structure. The radial extension necessary to form these graben is thought to be caused by asthenospheric drag of warmer, more ductile ice and/or water flowing toward the excavated center of the crater, under a brittle‐elastic lithospheric lid. Measurements of graben depths from stereo‐photoclinometric digital elevation models result in estimates of displacement, strain, and stress experienced by the ice shell. Graben widths are used to estimate the intersection depth of the bounding normal faults, a quantity related to the brittle‐ductile transition depth that approximates elastic shell thickness during crater collapse. Heat flows at the time of crater formation as well as ice lithosphere and total shell thickness are thus also constrained. Average widths and depths tend to decrease with increasing distance from the structure center, while inter‐graben spacing generally increases. Varied assumptions yield plausible total conductive ice shell thickness estimates between 4–8 and 2.5–5 km for Tyre and Callanish, respectively, and heat flows of ∼70–115 (±30) mW m−2 for realistic thermal conductivities, consistent with other geophysical estimates for Europa. Higher heat flows are consistent with thin (≲10 km), conductive ice shells and impact breaching, or penetration of the stagnant lid for a convecting ice shell. Callanish, geologically younger, formed in a time or region of greater heat flow than Tyre.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3