Pressure Deficit in Gale Crater and a Larger Northern Polar Cap After the MY34 Global Dust Storm

Author:

de la Torre Juárez Manuel1ORCID,Piqueux Sylvain1ORCID,Kass David M.1ORCID,Newman Claire E.2ORCID,Guzewich Scott D.3ORCID

Affiliation:

1. Jet Propulsion Laboratory/California Institute of Technology Pasadena CA USA

2. Aeolis Research Pasadena CA USA

3. NASA Goddard Space Flight Center Greenbelt MD USA

Abstract

AbstractWe describe the model‐independent analysis technique of Mars Science Laboratory (MSL) pressure and Mars Climate Sounder (MCS) data in de la Torre Juárez et al. (2019, https://doi.org/10.22541/essoar.169945479.90436599/v1) that compared multiple years of surface pressures on Gale before, during, and after the Global Dust Storm of Mars Year 34. The analysis found (a) representative pressure scale heights over Gale; (b) that the storm was followed by a pressure deficit at Gale; (c) the following C storms did not eliminate the deficit; (d) changes in the duration of the polar caps condensation seasons, with an early start of the North Polar (NP) ice cap growing season the year before the Great Dust Storm (GDS) and a late signature of the end of the expansion season thereafter, changes consistent with a larger growth phase of the NP cap; (e) MCS observed a larger than usual NP cap; and (f) cold temperature anomalies over the NP and warm over the Southern Pole after the storm. We also show that the analysis of observed MSL pressure data alone filters out effects on the pressure signal that are attributable to dynamical and orographic processes in a recent model analysis that makes similar interpretations as our 2019 study. One additional Mars year of observations is included to eliminate early concerns about sensor drifts. Noting that a similar NP anomaly was observed with MCS data after the last early GDS in MY25, and not the later GDS of MY27, the results suggest a possible unique effect of early GDSs.

Funder

Science Mission Directorate

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3