Affiliation:
1. Department of Earth Sciences Indian Institute of Technology‐Kanpur Kanpur India
2. CSIR‐National Geophysical Research Institute Hyderabad India
Abstract
AbstractWe investigate the magnetic fabrics and magnetic mineralogy of the impact melt rock at the Dhala impact structure to understand its emplacement mechanism. Pseudo‐single domains of Ti‐poor magnetite and Ti‐hematite are the prime magnetic carriers in the impact melt rock. The magnetic foliations show a range of dip amounts. The overall trend of the magnetic foliation of the impact melt rock draws a resemblance with the flood basalts or lava flows. A well‐developed magnetic lineation (K1) indicates the strong alignment of Ti‐poor magnetite grains. Therefore, the magnetic carriers may have crystallized and aligned themselves along the flow direction before the emplacement. It may be possible that after the crystallization of the magnetic carriers, the impact melt moved in a semi‐molten state similar to lava flows with temperatures below c. 1,500°C, which is the melting point of Ti‐magnetite and was emplaced as crater‐fill deposits. Among the three principal magnetic susceptibility axes, K1 aligns best with the mesoscopic flow indicators. K1 of individual specimens' trends between NW and SW, while the mean K1 at all the sites trends westward. Thus, at the studied sites, the impact melt flow was dominantly eastward. In the sites located to the NW and W, the eastward flow could be due to gravity‐driven crater inward flow toward the center. At site IM2, which is located to E, the eastward flow of the impact melt is possibly due to crater outward excavation flow.
Funder
Department of Science and Technology, Ministry of Science and Technology, India
Indian Institute of Technology Kanpur
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献