Silica‐Bearing Mounds and Strata in the Southwest Melas Basin, Valles Marineris, Mars: Evidence for a Hydrothermal Origin

Author:

Rogers Emma R.12ORCID,Qualizza Briar R.1,Heidenreich Joseph R.1,Dawson Henry G.13,Horgan Briony H. N.1ORCID

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences Purdue University West Lafayette IN USA

2. Department of Earth Sciences Dartmouth College Hanover NH USA

3. Department of Earth and Planetary Sciences Washington University in St. Louis St. Louis MO USA

Abstract

AbstractA small basin on the Southwest (SW) margin of Melas Chasma in Valles Marineris, Mars, hosts a variety of previously identified sedimentary fans and layered strata hypothesized to have been formed by one or more paleolakes. This basin also contains light‐toned layered mounds that have distinct spectral absorption bands consistent with amorphous hydrated silica (e.g., opal). While the general morphology and mineralogy of these features and the basin itself have been previously characterized, the formation mechanism of the hydrated silica features and their temporal relationships with the proposed paleolake remain to be determined. We use Compact Reconnaissance Imaging Spectrometer for Mars visible through short‐wave infrared reflectance spectra (0.35–2.65 μm) and High Resolution Imaging Science Experiment digital terrain models and images to analyze the stratigraphic location and morphology of the opaline silica‐bearing features in the SW Melas basin. We find that the basin hosts fourteen high‐relief “mounds,” eight low‐relief “patches,” and two extended layers within the sedimentary strata that are light‐toned, fractured, and often exhibit hydrated silica‐like spectral signatures. We hypothesize that the mounds are spring deposits formed by sub‐aerial hydrothermal activity, while the patches and layers correspond to sub‐lacustrine hydrothermal activity. The varied elevations of the mounds and patches indicate at least one fluctuation of lake level in the basin during its history. The combination of contemporaneous hydrothermal and lacustrine activity to form silica‐cemented sedimentary deposits in a nutrient‐rich subaqueous environment would have been conducive to forming and preserving biosignatures in the SW Melas basin.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3