Accuracy of Global Geospace Simulations: Influence of Solar Wind Monitor Location and Solar Wind Driving

Author:

Al Shidi Q.12ORCID,Pulkkinen T. I.2ORCID,Welling D.2ORCID,Toth G.2

Affiliation:

1. Department of Mechanical and Aerospace Engineering West Virginia University Morgantown WV USA

2. Department of Climate & Space Sciences and Engineering University of Michigan Ann Arbor MI USA

Abstract

AbstractSome space weather models, such as the Space Weather Modeling Framework (SWMF) used in this study, use solar wind propagated from the first Lagrange point (L1) to the bow shock nose (BSN) to forecast geomagnetic storms. The SWMF is a highly coupled framework of space weather models that include multiple facets of the Geospace environment, such as the magnetosphere and ionosphere. The propagated solar wind measurements are used as a boundary condition for SWMF. The solar wind propagation method is a timeshift based on the calculated phase front normal (PFN) which leads to some uncertainties. For example, the propagated solar wind could have evolved during this timeshift. We use a data set of 123 geomagnetic storms between 2010 and 2019 run by the SWMF Geospace configuration to analyze the impact solar wind propagation and solar wind driving has on the geomagnetic indices. We look at the probability distributions of errors in SYM‐H, cross polar cap potential (CPCP), and auroral electrojet indices AL and AU. Through studying the median errors (MdE), standard deviations and standardized regression coefficients, we find that the errors depend on the propagation parameters. Among the results, we show that the accuracy of the simulated SYM‐H depends on the spacecraft distance from the Sun‐Earth line. We also quantify the dependence of the standard deviation in SYM‐H errors on the PFN and solar wind pressure. These statistics provide an insight into how the propagation method affects the final product of the simulation, which are the geomagnetic indices.

Funder

National Aeronautics and Space Administration

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3