Uncertainty Quantification for Machine Learning‐Based Ionosphere and Space Weather Forecasting: Ensemble, Bayesian Neural Network, and Quantile Gradient Boosting

Author:

Natras Randa1ORCID,Soja Benedikt2ORCID,Schmidt Michael1

Affiliation:

1. Deutsches Geodätisches Forschungsinstitut (DGFI‐TUM) TUM School of Engineering and Design Technical University of Munich Munich Germany

2. Institute of Geodesy and Photogrammetry ETH Zurich Zurich Switzerland

Abstract

AbstractMachine learning (ML) has been increasingly applied to space weather and ionosphere problems in recent years, with the goal of improving modeling and forecasting capabilities through a data‐driven modeling approach of nonlinear relationships. However, little work has been done to quantify the uncertainty of the results, lacking an indication of how confident and reliable the results of an ML system are. In this paper, we implement and analyze several uncertainty quantification approaches for an ML‐based model to forecast Vertical Total Electron Content (VTEC) 1‐day ahead and corresponding uncertainties with 95% confidence intervals (CI): (a) Super‐Ensemble of ML‐based VTEC models (SE), (b) Gradient Tree Boosting with quantile loss function (Quantile Gradient Boosting, QGB), (c) Bayesian neural network (BNN), and (d) BNN including data uncertainty (BNN + D). Techniques that consider only model parameter uncertainties (a and c) predict narrow CI and over‐optimistic results, whereas accounting for both model parameter and data uncertainties with the BNN + D approach leads to a wider CI and the most realistic uncertainties quantification of VTEC forecast. However, the BNN + D approach suffers from a high computational burden, while the QGB approach is the most computationally efficient solution with slightly less realistic uncertainties. The QGB CI are determined to a large extent from space weather indices, as revealed by the feature analysis. They exhibit variations related to daytime/nightime, solar irradiance, geomagnetic activity, and post‐sunset low‐latitude ionosphere enhancement.

Funder

Deutscher Akademischer Austauschdienst

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Reference55 articles.

1. Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. et al. (2015).TensorFlow: Large‐scale machine learning on heterogeneous systems. Retrieved fromhttps://www.tensorflow.org/

2. A review of uncertainty quantification in deep learning: Techniques, applications and challenges

3. Ice water path retrievals from Meteosat-9 using quantile regression neural networks

4. Stochastic Gradient Descent Tricks

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3