Affiliation:
1. Department of Space Physics, Electronic Information School, Hubei Luojia Laboratory Wuhan University Wuhan China
2. Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam Germany
3. Department of Earth and Environmental Sciences Ludwig Maximilian University of Munich Munich Germany
4. College of Meteorology and Oceanography, National University of Defense Technology Changsha China
Abstract
AbstractIn this study, we propose a machine learning based approach to construct an empirical model of thermospheric mass densities, based on the MultiLayer Perceptron and bi‐directional Long Short‐Term Memory for ensemble learning model (MBiLE). The MBiLE model was trained by using only the thermospheric mass density from Swarm C satellite at ∼450 km altitude. To assess the performance of the MBiLE model, the model predictions were compared with observations from several satellites, namely, the Swarm C, the Challenging Minisatellite Payload (CHAMP) and the Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) satellites. The determination coefficients (R2) for the three satellites are 0.98, 0.99, and 0.98, respectively. The MBiLE model predicts the thermospheric mass density well not only at Swarm C altitude but also at lower altitudes. Earlier empirical models based on multivariate least‐square‐fitting approach failed to achieve this good altitude generalization (e.g., Liu et al., 2013, https://doi.org/10.1002/jgra.50144; Xiong et al., 2018a, https://doi.org/10.5194/angeo‐2018‐25). Further tests have been made by checking the MBiLE model prediction deviations in relation to magnetic local time, day of year, solar flux level, and magnetic activities. No obvious dependences are found for these parameters. Comparing with the NRLMSIS‐2.0 model, the MBiLE model improves prediction accuracy by 91%, 66%, and 56% at the three satellites altitudes. The results indicate that the MBiLE model has the ability to predict well the thermospheric mass density over a wide altitude range, for example, from 224 to 528 km, offering potential for atmospheric research applications.
Publisher
American Geophysical Union (AGU)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献