Probabilistic Short‐Term Solar Driver Forecasting With Neural Network Ensembles

Author:

Daniell Joshua D.1ORCID,Mehta Piyush M.1ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering West Virginia University Morgantown Morgantown WV USA

Abstract

AbstractSpace weather indices are used to drive forecasts of thermosphere density, which directly affects objects in low‐Earth orbit (LEO) through atmospheric drag force. A set of proxies and indices (drivers), F10.7, S10.7, M10.7, and Y10.7 are used as inputs by the JB2008, (https://doi.org/10.2514/6.2008‐6438) thermosphere density model. The United States Air Force (USAF) operational High Accuracy Satellite Drag Model (HASDM), relies on JB2008, (https://doi.org/10.2514/6.2008‐6438), and forecasts of solar drivers from a linear algorithm. We introduce methods using long short‐term memory (LSTM) model ensembles to improve over the current prediction method as well as a previous univariate approach. We investigate the usage of principal component analysis (PCA) to enhance multivariate forecasting. A novel method, referred to as striped sampling, is created to produce statistically consistent machine learning data sets. We also investigate forecasting performance and uncertainty estimation by varying the training loss function and by investigating novel weighting methods. Results show that stacked neural network model ensembles make multivariate driver forecasts which outperform the operational linear method. When using MV‐MLE (multivariate multi‐lookback ensemble), we see an improvement of RMSE for F10.7, S10.7, M10.7, and Y10.7 of 17.7%, 12.3%, 13.8%, 13.7% respectively, over the operational method. We provide the first probabilistic forecasting method for S10.7, M10.7, and Y10.7. Ensemble approaches are leveraged to provide a distribution of predicted values, allowing an investigation into robustness and reliability (R&R) of uncertainty estimates. Uncertainty was also investigated through the use of calibration error score (CES), with the MV‐MLE providing an average CES of 5.63%, across all drivers.

Funder

Office of the Director of National Intelligence

Publisher

American Geophysical Union (AGU)

Reference39 articles.

1. Principal component analysis

2. Anderson G. J. Gaffney J. A. Spears B. K. Bremer P.‐T. Anirudh R. &Thiagarajan J. J.(2020).Meaningful uncertainties from deep neural network surrogates of large‐scale numerical simulations. arXiv preprint arXiv:2010.13749.

3. Benson B. Brown E. Bonasera S. Acciarini G. Pérez‐Hernández J. A. Sutton E. et al. (2021).Simultaneous multivariate forecast of space weather indices using deep neural network ensembles.https://doi.org/10.48550/ARXIV.2112.09051

4. Predicting stock market index using LSTM

5. A New Empirical Thermospheric Density Model JB2008 Using New Solar and Geomagnetic Indices

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3