MEMPSEP‐I. Forecasting the Probability of Solar Energetic Particle Event Occurrence Using a Multivariate Ensemble of Convolutional Neural Networks

Author:

Chatterjee Subhamoy1ORCID,Dayeh Maher A.23ORCID,Muñoz‐Jaramillo Andrés1ORCID,Bain Hazel M.45ORCID,Moreland Kimberly2345,Hart Samuel23ORCID

Affiliation:

1. Southwest Research Institute Boulder CO USA

2. Southwest Research Institute San Antonio TX USA

3. The University of Texas at San Antonio San Antonio TX USA

4. Cooperative Institute for Research in Environmental Sciences University of Boulder Boulder CO USA

5. Space Weather Prediction Center NOAA Boulder CO USA

Abstract

AbstractThe Sun continuously affects the interplanetary environment through a host of interconnected and dynamic physical processes. Solar flares, Coronal Mass Ejections (CMEs), and Solar Energetic Particles (SEPs) are among the key drivers of space weather in the near‐Earth environment and beyond. While some CMEs and flares are associated with intense SEPs, some show little to no SEP association. To date, robust long‐term (hours‐days) forecasting of SEP occurrence and associated properties (e.g., onset, peak intensities) does not effectively exist and the search for such development continues. Through an Operations‐2‐Research support, we developed a self‐contained model that utilizes a comprehensive data set and provides a probabilistic forecast for SEP event occurrence and its properties. The model is named Multivariate Ensemble of Models for Probabilistic Forecast of Solar Energetic Particles (MEMPSEP). MEMPSEP workhorse is an ensemble of Convolutional Neural Networks that ingests a comprehensive data set (MEMPSEP‐III by Moreland et al. (2024, https://doi.org/10.1029/2023SW003765)) of full‐disc magnetogram‐sequences and in situ data from different sources to forecast the occurrence (MEMPSEP‐I—this work) and properties (MEMPSEP‐II by Dayeh et al. (2024, https://doi.org/10.1029/2023SW003697)) of a SEP event. This work focuses on estimating true SEP occurrence probabilities achieving a 2.5% improvement in reliability and a Brier score of 0.14. The outcome provides flexibility for the end‐users to determine their own acceptable level of risk, rather than imposing a detection threshold that optimizes an arbitrary binary classification metric. Furthermore, the model‐ensemble, trained to utilize the large class‐imbalance between events and non‐events, provides a clear measure of uncertainty in our forecast.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3