Deep Learning‐Based Regional Ionospheric Total Electron Content Prediction—Long Short‐Term Memory (LSTM) and Convolutional LSTM Approach

Author:

Jeong Se‐Heon1ORCID,Lee Woo Kyoung12ORCID,Kil Hyosub3ORCID,Jang Soojeong4ORCID,Kim Jeong‐Heon1ORCID,Kwak Young‐Sil12ORCID

Affiliation:

1. Korea Astronomy and Space Science Institute Daejeon South Korea

2. Korea University of Science and Technology Daejeon South Korea

3. Johns Hopkins University Applied Physics Laboratory Laurel MD USA

4. Kyung Hee University Yongin South Korea

Abstract

AbstractThis study evaluates the performance of deep learning approach in the prediction of the ionospheric total electron content (TEC) during magnetically quiet periods. Two deep learning techniques, long short‐term memory (LSTM) and convolutional LSTM (ConvLSTM), are employed to predict TEC values 24 hr ahead in the vicinity of the Korean Peninsula (26.5°–40°N, 121°–134.5°E). The LSTM method predicts TEC at a single point based on time series of data at that point, whereas the ConvLSTM method simultaneously predicts TEC values at multiple points using spatiotemporal distribution of TEC. Both the LSTM and ConvLSTM models are trained using the complete regional TEC maps reconstructed by applying the Deep Convolutional Generative Adversarial Network–Poisson Blending (DCGAN‐PB) method to observed TEC data. The training period spans from 2002 to 2018, and the model performance is evaluated using 2019 data. Our results show that the ConvLSTM method outperforms the LSTM method, generating more reliable TEC maps with smaller root mean square errors when compared to the ground truth (DCGAN‐PB TEC maps). This outcome indicates that deep learning models can improve the prediction accuracy of TEC at a specific point by taking into account spatial information of TEC. We conclude that ConvLSTM is a reliable and efficient approach for the prompt ionospheric prediction.

Funder

Korea Astronomy and Space Science Institute

National Science Foundation

National Research Foundation of Korea

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3