What Is the Radiation Impact of Extreme Solar Energetic Particle Events on Mars?

Author:

Zhang Jian1ORCID,Guo Jingnan12ORCID,Dobynde Mikhail I.1ORCID

Affiliation:

1. Deep Space Exploration Laboratory School of Earth and Space Sciences University of Science and Technology of China Hefei PR China

2. CAS Center for Excellence in Comparative Planetology USTC Hefei PR China

Abstract

AbstractSolar Energetic Particles (SEP) are one of the major sources of the Martian radiation environment. It is important to understand the SEP‐induced Martian radiation environment for future human habitats on Mars. Due to the lack of a global intrinsic magnetic field, Solar Energetic Particles (SEPs) can directly propagate through and interact with its atmosphere before reaching the surface and subsurface of Mars. Mars has many high mountains and low‐altitude craters where the atmospheric thickness can be more than 10 times different than one another. The SEP‐induced surface radiation level may therefore be very different from one location to another. We thus consider the influence of the atmospheric depths on the Martian radiation levels including the absorbed dose, dose equivalent, and (human‐)body effective dose induced by SEPs at varying heights above and below the Martian surface. The state‐of‐the‐art Atmospheric Radiation Interaction Simulator based on GEometry And Tracking Monte‐Carlo method has been employed for simulating particle interactions with the Martian atmosphere and terrain. We find that even the thinnest Martian atmosphere reduces radiation dose from that in deep space by at least 65%, and the shielding effect increases for denser atmosphere. Furthermore, we present a method to quickly forecast the SEP‐induced radiation in different regions of Mars with different surface pressures.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Reference37 articles.

1. Geant4—a simulation toolkit

2. BATSE observations of gamma-ray burst spectra. I - Spectral diversity

3. Banjac S.(2019).Atmospheric radiation interaction simulator (AtRIS) this current version is a frozen one based on the update on 2019‐06‐12. Retrieved fromhttps://gitlab.physik.uni-kiel.de/et/atris

4. The Atmospheric Radiation Interaction Simulator (AtRIS): Description and Validation

5. Spectral Analysis of the September 2017 Solar Energetic Particle Events

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Conceptual Architectural Response to Radiation on Mars;Architecture, Civil Engineering, Environment;2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3