Revisiting the Variation of the Ionospheric Irregularities in the Low Latitude Region of China Based on Small Regional Geodetic GNSS Station Network

Author:

Gao H. Y.1,Zhang D. H.1ORCID,Liu Z. Z.2,Sun S. J.3ORCID,Hao Y. Q.4ORCID,Xiao Z.1

Affiliation:

1. School of Earth and Space Sciences Peking University Beijing China

2. Department of Land Surveying and Geo‐Informatics The Hong Kong Polytechnic University Hong Kong China

3. China Research Institute of Radio‐wave Propagation Qingdao China

4. School of Atmospheric Sciences Sun Yat‐sen University Zhuhai China

Abstract

AbstractThe rate of total electron content index (ROTI) and loss of lock (LoL) from global navigation satellite system (GNSS) observations are an important data source for ionospheric scintillation study. However, there are certain limitations of these data in ionospheric scintillation study, and clearing these limitations is important to understand the results from these data. In this paper, the variation of the ionospheric scintillation is revisited based on LoL and ROTI from a spatial dense GNSS network in the low latitude region of China. Via a priori knowledge of scintillation morphology, the method to determine the baseline ROTI for discriminating quiet and disturbed conditions is provided, and the abnormal data of ROTI and LoL unrelated to ionosphere are found and eliminated. Results show that the data examination is necessary. Using the qualified ROTI and LoL, the morphological variations of ionospheric irregularities are revisited. The temporal variation of ROTI and LoL are generally consistent, but there are some discrepancies. The maximum LoL occurrence is at about 21:00 LT, it is between 20:00 and 23:00 LT for ROTI. For spatial distribution, both parameters reach maximum occurrence in the southwest direction, but LoL is more concentrated. The azimuth range of maximum occurrence is 180–190° for LoL and 210–220° for ROTI. Statistically, the correlation between LoL occurrence and ROTI value from observation of single GNSS station is relatively good when ROTI <5 TECU/min, but it becomes worse when ROTI >5 TECU/min. However, their correlation can be greatly improved when data are averaged among all the stations.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3