Intersatellite Comparisons of GOES Magnetic Field Measurements

Author:

Rich Frederick J.1ORCID,Califf Samuel23ORCID,Loto'aniu Paul T. M.23ORCID,Coakley Monica1,Krimchansky Alexander4,Singer Howard J.5ORCID

Affiliation:

1. Lincoln Laboratory Massachusetts Institute of Technology Lexington MA USA

2. Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA

3. National Centers for Environmental Information National Oceanic and Atmospheric Administration Boulder CO USA

4. NASA Goddard Space Flight Center Greenbelt MD USA

5. Space Weather Prediction Center NOAA Boulder CO USA

Abstract

AbstractGOES‐16 and GOES‐17 are the first of NOAA's Geostationary Operational Environmental Satellite (GOES)‐R series of satellites. Each GOES‐R satellite has a magnetometer mounted on the end (outboard) and one part‐way down a long boom (inboard). This paper demonstrates the relative accuracy and stability of the measurements on a daily and long‐term basis. The GOES‐16 and GOES‐17 magnetic field observations from 2017 to 2020 have been compared to simultaneous magnetic field observations from each other and from the previous GOES‐NOP series satellites (GOES‐13, GOES‐14 and GOES‐15). These comparisons provide assessments of relative accuracy and stability. We use a field model to facilitate the inter‐satellite comparisons at different longitudes. GOES‐16 inboard and outboard magnetometers data suffer daily variations which cannot be explained by natural phenomena. Long‐term‐averaged GOES‐16 outboard (OB) data has daily variations of ±3 nT from average values with one‐sigma uncertainty of ±1.5 nT. Long‐term averaged GOES‐17OB magnetometer data have minimal daily variations. Daily average of the difference between the GOES‐16 outboard or GOES‐17 outboard measurements and the measurements made by another GOES satellite are computed. The long‐term averaged results show the GOES‐16OB and GOES‐17OB measurements have long‐term stability (±2 nT or less) and match measurements from magnetometers on other GOES within limits stated herein. The GOES‐17OB operational offset (zero field value) was refined using the GOES‐17 satellite rotated 180° about the Earth pointing axis (known as a yaw flip).

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3