Enhanced Radiation Levels at Aviation Altitudes and Their Relationship to Plasma Waves in the Inner Magnetosphere

Author:

Aryan Homayon1ORCID,Bortnik Jacob1ORCID,Tobiska W. Kent2ORCID,Mehta Piyush3ORCID,Siddalingappa Rashmi3

Affiliation:

1. Atmospheric and Oceanic Sciences University of California Los Angeles Los Angeles CA USA

2. Space Weather Division Space Environment Technologies Pacific Palisades CA USA

3. Mechanical and Aerospace Engineering West Virginia University Morgantown WV USA

Abstract

AbstractIt is believed that galactic cosmic rays and solar energetic particles are the two major sources of ionizing radiation. However, the radiation source may also be due to relativistic electrons that are associated with precipitation from the Van Allen radiation belts. In this study, we use Automated Radiation Measurements for Aerospace Safety (ARMAS) measurements to investigate the precipitation mechanism of energetic radiation belt electrons. ARMAS instruments are flown on agency‐sponsored (NASA, National Oceanic and Atmospheric Administration, National Science Foundation, Federal Aviation Administration, DOE) flights, commercial space transportation companies and airliners (>9 km) in automated radiation collection mode. We identified magnetic conjunction events between ARMAS and NASA's Van Allen Probes to study the highly variable, dynamic mesoscale radiation events observed by ARMAS instruments at aviation altitudes and their relationship to various plasma waves in the inner magnetosphere measured by the Van Allen Probes. The results show that there is a strong correlation between dose rates observed by ARMAS and plasmaspheric hiss wave power measured by the Van Allen Probes, but no such relationship with electromagnetic ion cyclotron waves and only a modest correlation with whistler mode chorus waves. These results suggest that the space environment could have a potentially significant effect on passenger safety.

Funder

National Aeronautics and Space Administration

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3