Analysis of the Geoelectric Field in Sweden Over Solar Cycles 23 and 24: Spatial and Temporal Variability During Strong GIC Events

Author:

Lanabere V.1ORCID,Dimmock A. P.1ORCID,Rosenqvist L.2ORCID,Juusola L.3ORCID,Viljanen A.3ORCID,Johlander A.2ORCID,Odelstad E.2ORCID

Affiliation:

1. Swedish Institute of Space Physics Uppsala Sweden

2. Swedish Defense Research Agency Stockholm Sweden

3. Finnish Meteorological Institute Helsinki Finland

Abstract

AbstractGeomagnetic storms can produce large perturbations on the Earth magnetic field. Through complex magnetosphere‐ionosphere coupling, the geoelectric field (E) and geomagnetic field (B) are highly perturbed. The E is the physical driver of geomagnetically induced currents. However, a statistical study of the E in Sweden has never been done before. We combined geomagnetic data from the International Monitor for Auroral Geomagnetic Effects network in Northern Europe with a 3‐D structure of Earth's electrical conductivity in Sweden as the input of a 1‐D model to compute the E between 2000 and 2018. Northwestern Sweden presents statistically larger E magnitudes due to larger |dB/dt| variations in the north than in the south of Sweden and relative lower conductivity in the west compared to central and eastern Sweden. In contrast, the 15 strongest daily maximum |E| events present more frequently a maximum magnitude in central Sweden (62.25°N) and their relative strengths are not the same for all latitudes. These results highlight the different regional response to geomagnetic storms, which can be related to ground conductivity variability and the complex magnetosphere‐ionosphere coupling mechanisms.

Funder

Vetenskapsrådet

Academy of Finland

Swedish National Space Agency

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3