MagNet—A Data‐Science Competition to Predict Disturbance Storm‐Time Index (Dst) From Solar Wind Data

Author:

Nair Manoj12ORCID,Redmon Rob2ORCID,Young Li‐Yin12,Chulliat Arnaud12ORCID,Trotta Belinda3,Chung Christine4ORCID,Lipstein Greg4,Slavitt Isaac4

Affiliation:

1. Cooperative Institute for Research in Environmental Sciences University of Colorado Boulder CO USA

2. NOAA's National Centers for Environmental Information Boulder CO USA

3. Bureau of Meteorology Melbourne VIC Australia

4. DrivenData Inc. Denver CO USA

Abstract

AbstractEnhanced interaction between solar‐wind and Earth's magnetosphere can cause space weather and geomagnetic storms that have the potential to damage critical technologies, such as magnetic navigation, radio communications, and power grids. The severity of a geomagnetic storm is measured using the disturbance‐storm‐time (Dst) index. The Dst index is calculated by averaging the horizontal component of the magnetic field observed at four near‐equatorial observatories and is used to drive geomagnetic disturbance models. As a key specification of the magnetospheric dynamics, the Dst index is used to drive geomagnetic disturbance models such as the High Definition Geomagnetic Model—Real Time. Since 1975, forecasting models have been proposed to forecast Dst solely from solar wind observations at the Lagrangian‐1 position. However, while the recent Machine‐Learning (ML) models generally perform better than other approaches, many are unsuitable for operational use. Recent exponential growth in data‐science research and the democratization of ML tools have opened up the possibility of crowd‐sourcing specific problem‐solving tasks with clear constraints and evaluation metrics. To this end, National Oceanic and Atmospheric Administration (NOAA)'s National Centers for Environmental Information and the University of Colorado's Cooperative Institute for Research in Environmental Sciences conducted an open data‐science challenge called “MagNet: Model the Geomagnetic Field.” The challenge attracted 622 participants, resulting in 1,197 model submissions that used various ML approaches. The top models that met the evaluation criteria are operationally viable and retrainable and suitable for NOAA's operational needs. The paper summarizes the competition results and lessons learned.

Publisher

American Geophysical Union (AGU)

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3