Modeling Ionospheric TEC Using Gradient Boosting Based and Stacking Machine Learning Techniques

Author:

Nigusie Ayanew12ORCID,Tebabal Ambelu13ORCID,Galas Roman4

Affiliation:

1. Department of Physics Washera Geospace and Radar Science Research Laboratory Bahir Dar University Bahir Dar Ethiopia

2. Department of Physics Oda Bultum University Chiro Ethiopia

3. Institute of Geophysics Space Science and Astronomy Addis Ababa University Addis Ababa Ethiopia

4. Institute of Geodesy and Geoinformation Science Chair of Precision Navigation and ‐Positioning, Technical University of Berlin Berlin Germany

Abstract

AbstractAccurately predicting and modeling the ionospheric total electron content (TEC) can greatly improve the accuracy of satellite navigation and positioning and help to correct ionospheric delay. This study assesses the effectiveness of four different machine learning (ML) models in predicting hourly vertical TEC (VTEC) data for a single‐station study over Ethiopia. The models employed include gradient boosting machine (GBM), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM) algorithms, and a stacked combination of these algorithms with a linear regression algorithm. The models relied on input variables that represent solar activity, geomagnetic activity, season, time of the day, interplanetary magnetic field, and solar wind. The models were trained using the VTEC data from January 2011 to December 2018, excluding the testing data. The testing data comprised the data for the year 2015 and the initial 6 months of 2017. The RandomizedSearchCV algorithm was used to determine the optimal hyperparameters of the models. The predicted VTEC values of the four ML models were strongly correlated with the GPS VTEC, with a correlation coefficient of ∼0.96, which is significantly higher than the corresponding value of the International Reference Ionosphere (IRI 2020) model, which is 0.87. Comparing the GPS VTEC values with the predicted VTEC values based on diurnal and seasonal characteristics showed that the predictions of the developed models were generally in good agreement and outperformed the IRI 2020 model. Overall, the ML models used in this study demonstrated promising potential for accurate single‐station VTEC prediction over Ethiopia.

Publisher

American Geophysical Union (AGU)

Reference44 articles.

1. International Reference Ionosphere 2000

2. International Reference Ionosphere 2016: From ionospheric climate to real‐time weather predictions

3. XGboost with python: Gradient boosted trees with XGboost and scikit‐learn;Brownlee J.;Machine Learning Mastery,2016

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3