Affiliation:
1. Université Clermont Auvergne CNRS IRD OPGC Laboratoire Magmas et Volcans Clermont‐Ferrand France
2. Department of Earth and Planetary Science University of California, Berkeley Berkeley CA USA
3. Université Clermont Auvergne CNRS/IN2P3 Laboratoire de Physique de Clermont Clermont‐Ferrand France
Abstract
AbstractThe dynamics of geophysical dilute turbulent gas‐particles mixtures depends to a large extent on particle concentration, which in turn depends predominantly on the particle settling velocity. We experimentally investigate air‐particle mixtures contained in a vertical pipe in which the velocity of an ascending air flux matches the settling velocity of glass particles. To obtain local particle concentrations in these mixtures, we use acoustic probing and air pressure measurements and show that these independent techniques yield similar results for a range of particle sizes and particle concentrations. Moreover, we find that in suspensions of small particles (78 μm) the settling velocity increases with the local particle concentration due to the formation of particle clusters. These clusters settle with a velocity that is four times faster than the terminal settling velocity of single particles, and they double settling speeds of the suspensions. In contrast, in suspensions of larger particles (467 μm) the settling velocity decreases with increasing particle concentration. Although particle clusters are still present in this case, the settling velocity is decreased by 30%, which is captured by a hindered settling model. These results suggest an interplay between hindered settling and cluster‐induced enhanced settling, which in our experiments occur respectively at Stokes number O(100) and O(1). We discuss implications for volcanic plumes and pyroclastic currents. Our study suggests that clustering and related enhanced or hindered particle settling velocities should be considered in models of volcanic phenomena and that drag law corrections are needed for reliable predictions and hazard assessment.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献