Crustal Structure of the Western U.S. From Rayleigh and Love Wave Amplification Data

Author:

Sturgeon William1ORCID,Ferreira Ana M. G.12ORCID,Schardong Lewis3ORCID,Marignier Augustin4ORCID

Affiliation:

1. Department of Earth Sciences Faculty of Mathematical & Physical Sciences University College London London UK

2. CERIS Instituto Superior Técnico Universidade de Lisboa Lisboa Portugal

3. The Geological Survey of Israel Jerusalem Israel

4. Research School of Earth Sciences Australian National University Canberra Australia

Abstract

AbstractSurface wave amplification measurements have narrower depth sensitivity when compared to more traditional seismic observables such as surface wave dispersion measurements. In particular, Love wave amplification measurements have the advantage of strong sensitivity to the crust. For the first time, we explore the potential of Love wave amplification measurements to image crustal velocity in the western U.S. The effects of overtone interference, radial anisotropy and Moho depth are all explored. Consequently, we present SWUS‐crust, a three‐dimensional shear‐wave velocity model of crustal structure in the western U.S. We use Rayleigh wave amplification measurements in the period range of 38–114 s, along with Love wave amplification measurements in the period range of 38–62 s. We jointly invert over 6,400 multi‐frequency measurements using the Monte‐Carlo based Neighborhood Algorithm, which allows for uncertainty quantification. SWUS‐crust confirms several features observed in previous models, such as high‐velocity anomalies beneath the Columbia basin and low‐velocity anomalies beneath the Basin and Range province. Certain features are sharpened in our model, such as the northern border of the High‐Lava Plains in southern Oregon in the middle crust.

Funder

Natural Environment Research Council

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3