The Interaction Between Frictional Slip and Viscous Fault Root Produces Slow Slip Events

Author:

Perfettini Hugo1ORCID,Molinari Alain2ORCID

Affiliation:

1. Université Grenoble Alpes IRD CNRS ISTerre Grenoble France

2. Laboratoire d'Étude des Microstructures et de Mécanique des Matériaux UMR CNRS 7239 Université de Lorraine Metz France

Abstract

AbstractWe consider a model where an unstable frictional region, governed by rate and state friction, interacts with a viscous zone with Newtonian rheology. The system is loaded at distance with a constant velocity. Pore pressure variations are considered and we show that the model of Segall and Rice (1995, https://doi.org/10.1029/95jb02403) relating porosity changes to variations of the state variable could be derived considering viscoplastic deformation of a population of identical asperities. We perform a linear stability analysis in the case of a constant pore pressure in agreement with the full numerical results. For a given value of the viscosity of the viscous region, stable slip is promoted at low normal stress and unstable slip at high normal stress. Near the transition from stable to unstable slip, modest acceleration of slip, resembling slow slip events (SSE) are observed. We show that our model can reproduce real SSE sequences in the Guerrero subduction zone which are the largest worldwide. The best fit parameters suggest that SSEs happen in areas of low effective normal stress (for the frictional region) and low viscosity (for the viscous region). In our model, SSEs happen in a regime where the viscous region is able to counteract the instability of the frictional one. We show that considering a rate strengthening rheology or a non newtonian one leads to the same linear stability results. Our work shows that a simple model with homogeneous spatial properties can lead to complex dynamics, covering a wide range of observed sliding modes, from steady‐state creep to seismic slip and SSEs.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3