Corrosive Influence of Carbon Dioxide on Crack Initiation in Quartz: Comparison With Liquid Water and Vacuum Environments

Author:

Simeski Filip1ORCID,Ihme Matthias12ORCID

Affiliation:

1. Department of Mechanical Engineering Stanford University Stanford CA USA

2. SLAC National Accelerator Laboratory Menlo Park CA USA

Abstract

AbstractThe stimulation of crack growth in quartz and siliceous materials by injecting carbon dioxide (CO2) represents a key technology in long‐term carbon storage and in the development of natural gas wells. While this technology is widely used, the molecular impact of CO2 interactions on the solid matrix is only incompletely understood. In this work, we employ reactive molecular dynamics simulations to study how the CO2 fluid environment affects the mechanical properties of pre‐cracked single‐crystal quartz. The thermodynamic conditions of interest are those relevant to subsurface reservoirs. We report how structural properties of quartz—bond length distribution and crack tip shape—evolve upon introduction of a fluid. These properties are directly related to macroscopic quantities of the global stress–strain curves, thus reaffirming the inherent coupling across multiple scales for fluid–solid interactions in the subsurface. We find that CO2 reduces the fracture toughness of quartz by 12.1% compared to that of quartz in vacuum, thereby promoting crack growth and enhancing fluid transport in the subsurface.

Funder

Basic Energy Sciences

Alexander von Humboldt-Stiftung

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3