Seismogenic Structure of the 2014 M6.5 Ludian Earthquake From Three‐Dimensional Joint Inversion of Magnetotelluric Data and Seismic Arrival Times

Author:

Huang Yuqi1,Moorkamp Max2ORCID,Gao Ji13ORCID,Zhang Haijiang134ORCID

Affiliation:

1. Laboratory of Seismology and Physics of Earth's Interior School of Earth and Space Sciences University of Science and Technology of China Hefei China

2. Ludwig‐Maximilians University of Munich Munich Germany

3. Mengcheng National Geophysical Observatory University of Science and Technology of China Hefei China

4. CAS Center for Excellence in Comparative Planetology University of Science and Technology of China Hefei China

Abstract

AbstractOn 3 August 2014, a destructive earthquake with a magnitude of 6.5 occurred in the Ludian region in Yunan, China, causing heavy casualties. However, the seismogenic structure of the Ludian earthquake is still unclear. To address this issue, we have developed a three‐dimensional joint inversion algorithm for magnetotelluric data and seismic body wave arrival times based on the cross gradient structural similarity constraint, which utilizes the complementary advantages of the two different datasets. We use arrival times of P‐ and S‐waves from 6,369 local earthquakes recorded by 30 seismic stations and magnetotelluric impedances from 127 MT stations to perform the joint inversion to construct a combined 3‐D P‐wave velocity (Vp), S‐wave velocity (Vs), and resistivity models and the locations of relocated aftershocks in the source region of the Ludian earthquake. Our models show significant low Vp/Vs ratios and low resistivity in the upper crust of the main shock zone, and the relocated aftershocks form an L‐shaped zone. Based on petrophysical studies and analysis of the cross‐plots of different physical properties, we infer the existence of cracks/fractures and fluids as well as high quartz contents in the source region. These fluids may play a key role in promoting the Ludian earthquake by reducing the effective normal stress of the fault zone, and the existence of high quartz contents further makes the crustal rocks in the source region more brittle. Our study provides a new evidence how the properties of the crust in the focal area have some control on the genesis of moderate to large earthquakes.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3