Paleomagnetic Constraint on the Age of the Shyok Suture Zone

Author:

Martin Craig R.12ORCID,Jagoutz Oliver1,Upadhyay Rajeev3,van Tongeren Jill A.4ORCID,Mueller Paul A.5ORCID,Weiss Benjamin P.1ORCID

Affiliation:

1. Department of Earth, Atmospheric, and Planetary Sciences Massachusetts Institute of Technology Cambridge MA USA

2. Department of Earth and Planetary Sciences University of Texas at Austin Austin TX USA

3. Department of Geology Kumaun University Nainital India

4. Department of Earth and Climate Sciences Tufts University Medford MA USA

5. Department of Geological Sciences University of Florida Gainesville FL USA

Abstract

AbstractThe India‐Eurasia collision is a key case study for understanding the influence of plate tectonic processes on Earth's crust, atmosphere, hydrosphere, and biosphere. However, the timing of the final India‐Eurasia continental collision is debated due to significant uncertainty in the age of the collision between the Kohistan‐Ladakh arc (KLA) and Eurasia along the Shyok suture zone. Here we present paleomagnetic results that constrain the Karakoram terrane in northwest India to a paleolatitude of 19.9 ± 8.9°N between 93 and 75 million years ago (Ma). Our results show that the Karakoram terrane was situated on the southern margin of Eurasia in the Late‐Cretaceous. Our results indicate that the KLA and Eurasian continent had a not converged until <61.6 Ma, placing a Paleocene older limit on the age of final closure of the Shyok suture zone. This suggests that the India‐Eurasia collision in northwestern India likely occurred after the closure of the oceanic basin between the KLA and Eurasia. The Paleocene collision event affecting India that has been widely interpreted to represent final India‐Eurasia collision instead records the arc‐continent collision between the KLA and the northern edge of India prior to final India‐Eurasia collision. Final India‐Eurasia collision in northwest India most likely occurred after the closure of the oceanic basin between the KLA and Eurasia.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3