Potential Role of Volcanic Glass‐Smectite Mixtures in Slow Earthquakes in Shallow Subduction Zones: Insights From Low‐ to High‐Velocity Friction Experiments

Author:

Okuda Hanaya123ORCID,Hirose Takehiro3ORCID,Yamaguchi Asuka12ORCID

Affiliation:

1. Department of Ocean Floor Geoscience Atmosphere and Ocean Research Institute University of Tokyo Kashiwa Japan

2. Department of Earth and Planetary Science University of Tokyo Kashiwa Japan

3. Kochi Institute for Core Sample Research (X‐star) Japan Agency for Marine‐Earth Science and Technology (JAMSTEC) Nankoku Japan

Abstract

AbstractVolcanic glass and its mixture with smectite are commonly observed in shallow parts of subduction zones. As volcanic glass layers often act as glide planes in submarine landslides, and because its alteration product, smectite, is one of the frictionally weakest geological materials, the frictional characteristics of volcanic glass‐smectite mixtures are important for fault slip behavior in shallow parts of subduction zones. We performed a series of friction experiments on volcanic glass‐smectite mixtures with different smectite contents from 0% to 100% at various velocity conditions from 10 μm/s to 1 m/s under an effective normal stress of 5 MPa and pore pressure of 10 MPa. In general, apparent friction coefficients negatively depend on the smectite content at any velocity tested. We found that samples with smectite contents of 15%–30% showed a drastic slip‐weakening behavior at intermediate velocities of 1–3 mm/s. Finite element method modeling shows that thermal pressurization does not contribute to the observed weakening behavior. The critical nucleation length estimated from the slip‐weakening behavior is approximately 1–10 km, which is large enough to prevent the slip to accelerate to seismic slip velocity. Therefore, gouges with minor amount of clay, such as subducting volcanic ash layers, may contribute to the occurrence of the slow earthquakes at shallow depths in subduction zones.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3