Discrete Element Modeling of Southeast Asia's 3D Lithospheric Deformation During the Indian Collision

Author:

Jiao Liqing12ORCID,Tapponnier Paul3,Donzé Frédéric‐Victor4,Scholtès Luc5,Gaudemer Yves6,Xu Xiwei3

Affiliation:

1. SinoProbe Lab Chinese Academy of Geological Sciences Beijing China

2. Institute of Geology Chinese Academy of Geological Sciences Beijing China

3. National Institute of Natural Hazards MEMC Beijing China

4. Université Grenoble Alpes ISTerre Grenoble France

5. CNRS IRD OPGC Laboratoire Magma et Volcans Université Clermont Auvergne Clermont‐Ferrand France

6. Institute de Physique du Globe Paris France

Abstract

AbstractThe Indian collision has deformed the eastern Asian continent in a multifaceted way, uplifting Tibet and surrounding mountains, activating ≥1,000 km‐long strike‐slip faults, and opening Tertiary rifts and oceanic basins up to ≈3,000 km away from the Himalayas. Modeling such broad‐scale tectonics has been challenging. While continent‐scale, lithospheric deformation appears to have been primarily taken‐up by long, narrow, inter‐connected shear‐zones with large offsets, the contribution of processes such as channel‐flow, collapse, delamination, etc… has remained contentious. Here, based on increasing 4G (Geological, Geophysical, Geochronological, Geodetic) evidence including kinematic and timing constraints on the main mechanisms at play, we use Discrete Element (DE) Modeling to simulate and further understand the evolution of 3D strain across east Asia since the onset of collision, ≈55 Ma ago. The planar, 50 million km2, 125 km‐thick models are scaled for gravity. The approach permits mega‐fault generation and evolution without pre‐arranged initial settings. The results provide insight into fault birth, propagation and motion, as well as mountain building and plateau growth. They corroborate that continental crustal thickening across Tibet alternated with the extrusion of large blocks that rifted apart in the far field. Remarkably, without changes in boundary conditions or indentation rate, the DE model also vindicates slip reversal along initial strike‐slip shear zones.

Funder

Chinese Academy of Geological Sciences

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3