Affiliation:
1. State Key Laboratory of Geological Processes and Mineral Resources School of Earth Sciences and Resources China University of Geosciences Beijing China
2. Geological Research Institute of Shandong Gold Group Co, Ltd. Jinan China
3. School of Earth and Environmental Sciences The University of Queensland Brisbane QLD Australia
4. Department of Earth and Planetary Sciences McGill University Montréal QC Canada
5. Department of Geology Faculty of Science University of Zagreb Zagreb Croatia
Abstract
AbstractThe process of slab tearing profoundly affects interchanges of material and energy between the lithosphere and asthenosphere and has been invoked as a trigger of magmatism in modern and ancient subduction‐collision systems. Horizontal slab tears may occur after continental collision and subsequent slab break‐off, whereas vertical slab tears may occur in response to along‐strike variations in rollback velocity, thereby ripping the subducting lithosphere. Previous studies have documented tearing of subducting slabs in modern convergent settings using geophysical methods, but in ancient collisional belts, where these methods cannot be applied, detection of slab tearing is more difficult, particularly if the oceanic plate was fully subducted and the geological evidence for subduction is limited. Here, we employ multiproxy element‐isotope imaging, as well as zircon petrochronology and whole‐rock geochemistry, to assess evidence of vertical tearing of the Mianlue slab in the Triassic Qinling Orogen in central China. Our results show evidence of anomalous, inferred tear‐related magmatism east of 107°E, at 225–210 Ma. Vertical tearing of the northward subducting Mianlue slab is recorded by geochemically anomalous igneous rocks, and the recognition of N–S to NE–SW trending boundaries defined by Sr‐Nd‐Hf isotopes, elemental ratios (Nb/Ta, and Ca/Al), Mg#, and reduced crustal thickness between 107° and 108°E. The inferred vertical tear may have been driven by slab rollback of the Mianlue slab at 225–210 Ma. The results show that multiproxy element‐isotope imaging (e.g., of εNd(t), εHf(t), (87Sr/86Sr)i, Nb/Ta, Mg#, and Ca/Al) can be used to reconstruct the evolution of fossil subduction systems.
Funder
National Natural Science Foundation of China
Beijing Nova Program
Australian Research Council
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics