Seismic Tomography of Nabro Caldera, Eritrea: Insights Into the Magmatic and Hydrothermal Systems of a Recently Erupted Volcano

Author:

Gauntlett M.1ORCID,Hudson T.1ORCID,Kendall J.‐M.1ORCID,Rawlinson N.2ORCID,Blundy J.1ORCID,Lapins S.3ORCID,Goitom B.3,Hammond J.4ORCID,Oppenheimer C.5ORCID,Ogubazghi G.6

Affiliation:

1. Department of Earth Sciences University of Oxford Oxford UK

2. Bullard Laboratories Department of Earth Sciences University of Cambridge Cambridge UK

3. School of Earth Sciences University of Bristol Bristol UK

4. Department of Earth and Planetary Sciences University of London Birkbeck UK

5. Department of Geography University of Cambridge Cambridge UK

6. Eritrea Institute of Technology May‐Nefhi Eritrea

Abstract

AbstractUnderstanding the crustal structure and the storage and movement of fluids beneath a volcano is necessary for characterizing volcanic hazard, geothermal prospects and potential mineral resources. This study uses local earthquake traveltime tomography to image the seismic velocity structure beneath Nabro, an off‐rift volcano located within the central part of the Danakil microplate near the Ethiopia‐Eritrea border. Nabro underwent its first historically documented eruption in June 2011, thereby providing an opportunity to analyze its post‐eruptive state by mapping subsurface fluid distributions. We use a catalog of earthquakes detected on a temporary seismic array using machine learning methods to simultaneously relocate the seismicity and invert for the three‐dimensional P‐ and S‐wave velocity structures (VP, VS) and the ratio between them (VP/VS). Overall, our model shows higher than average P‐ and S‐wave velocities, suggesting the presence of high‐strength, solidified intrusive magmatic rocks in the crust. We identify an aseismic region of low VP, low VS, and high VP/VS ratio at depths of 6–10 km b.s.l., interpreted as the primary melt storage region that fed the 2011 eruption. Above this is a zone of high VS, low VP, and low VP/VS ratio, representing an intrusive complex of fractured rocks partially saturated with over‐pressurized gases. Our observations identify the persistence of magma in the subsurface following the eruption, and track the degassing of this melt through the crust to the surface. The presence of volatiles and high temperatures within the shallow crust indicate that Nabro is a viable candidate for geothermal exploration.

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3