Affiliation:
1. Department of Earth Sciences University of Oxford Oxford UK
2. Bullard Laboratories Department of Earth Sciences University of Cambridge Cambridge UK
3. School of Earth Sciences University of Bristol Bristol UK
4. Department of Earth and Planetary Sciences University of London Birkbeck UK
5. Department of Geography University of Cambridge Cambridge UK
6. Eritrea Institute of Technology May‐Nefhi Eritrea
Abstract
AbstractUnderstanding the crustal structure and the storage and movement of fluids beneath a volcano is necessary for characterizing volcanic hazard, geothermal prospects and potential mineral resources. This study uses local earthquake traveltime tomography to image the seismic velocity structure beneath Nabro, an off‐rift volcano located within the central part of the Danakil microplate near the Ethiopia‐Eritrea border. Nabro underwent its first historically documented eruption in June 2011, thereby providing an opportunity to analyze its post‐eruptive state by mapping subsurface fluid distributions. We use a catalog of earthquakes detected on a temporary seismic array using machine learning methods to simultaneously relocate the seismicity and invert for the three‐dimensional P‐ and S‐wave velocity structures (VP, VS) and the ratio between them (VP/VS). Overall, our model shows higher than average P‐ and S‐wave velocities, suggesting the presence of high‐strength, solidified intrusive magmatic rocks in the crust. We identify an aseismic region of low VP, low VS, and high VP/VS ratio at depths of 6–10 km b.s.l., interpreted as the primary melt storage region that fed the 2011 eruption. Above this is a zone of high VS, low VP, and low VP/VS ratio, representing an intrusive complex of fractured rocks partially saturated with over‐pressurized gases. Our observations identify the persistence of magma in the subsurface following the eruption, and track the degassing of this melt through the crust to the surface. The presence of volatiles and high temperatures within the shallow crust indicate that Nabro is a viable candidate for geothermal exploration.
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献