Spatio‐Temporal Evolution of Aftershock and Repeater Source Properties After the 2016 Pedernales Earthquake (Ecuador)

Author:

Chalumeau Caroline1ORCID,Agurto‐Detzel Hans2ORCID,De Barros Louis1ORCID,Charvis Philippe1ORCID,

Affiliation:

1. Université Côte d’Azur IRD CNRS Observatoire de la Côte d’Azur UMR Géoazur Valbonne France

2. Geophysical Institute (GPI) Karlsruhe Institute of Technology Karlsruhe Germany

Abstract

AbstractSubduction zones are highly heterogeneous regions capable of hosting large earthquakes. To better constrain the processes at depth, we analyze the source properties of 1514 aftershocks of the 16th April 2016 Mw 7.8 Pedernales earthquake (Ecuador) using spectral ratios. We are able to retrieve accurate seismic moments, stress drops, and P and S corner frequencies for 341 aftershocks, including 136 events belonging to families of repeating earthquakes. We find that, for the studied magnitude range (Mw 2–4), stress drops appear to increase as a function of seismic moment. They are also found to depend on their distance to the trench. This is in part explained by the increase in depth, and therefore normal stress, away from the trench. However, even accounting for the shallow depths of earthquakes, stress drops appear to be anomalously low near the trench, which can be explained by a high pore fluid pressure or by inherent properties of the medium (low coefficient of friction/low rigidity of the medium) in that region. We are also able to examine the temporal evolution of source properties thanks to the presence of repeating earthquakes. We find that the variations of source properties within repeating earthquake families are not uniform, and are highly spatially variable over most of the study area. This is not the case near the trench, however, where stress drops systematically decrease over time. We suggest that this reflects an increase in pore fluid pressure near the trench over the postseismic period.

Funder

Agence Nationale de la Recherche

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3