Affiliation:
1. Université Côte d’Azur IRD CNRS Observatoire de la Côte d’Azur UMR Géoazur Valbonne France
2. Geophysical Institute (GPI) Karlsruhe Institute of Technology Karlsruhe Germany
Abstract
AbstractSubduction zones are highly heterogeneous regions capable of hosting large earthquakes. To better constrain the processes at depth, we analyze the source properties of 1514 aftershocks of the 16th April 2016 Mw 7.8 Pedernales earthquake (Ecuador) using spectral ratios. We are able to retrieve accurate seismic moments, stress drops, and P and S corner frequencies for 341 aftershocks, including 136 events belonging to families of repeating earthquakes. We find that, for the studied magnitude range (Mw 2–4), stress drops appear to increase as a function of seismic moment. They are also found to depend on their distance to the trench. This is in part explained by the increase in depth, and therefore normal stress, away from the trench. However, even accounting for the shallow depths of earthquakes, stress drops appear to be anomalously low near the trench, which can be explained by a high pore fluid pressure or by inherent properties of the medium (low coefficient of friction/low rigidity of the medium) in that region. We are also able to examine the temporal evolution of source properties thanks to the presence of repeating earthquakes. We find that the variations of source properties within repeating earthquake families are not uniform, and are highly spatially variable over most of the study area. This is not the case near the trench, however, where stress drops systematically decrease over time. We suggest that this reflects an increase in pore fluid pressure near the trench over the postseismic period.
Funder
Agence Nationale de la Recherche
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献