Affiliation:
1. Department of Earth Sciences University of Geneva Geneva Switzerland
2. Department of Chemical and Geological Sciences University of Cagliari Cagliari Italy
3. Department of Earth Sciences and Engineering King Abdullah University of Science and Technology (KAUST) Thuwal Saudi Arabia
4. ADRGT Grenoble France
Abstract
AbstractGeysers fascinate scientists and visitors for several centuries. However, many driving mechanisms such as heat transfer in the conduit and in the subsurface remain poorly understood. We document for the first time transient temperature variations inside the active Strokkur's and nearby quasi‐dormant Great Geysir's conduits, Iceland. While recording temperature inside the conduit, we visually monitored Strokkur's activity at the vent with a high‐speed camera, providing a high temporal resolution of the eruptions. Our results reveal heat transfer from a bubble trap to and through the conduit. We propose a model for the eruptive cycle of Strokkur that includes vapor slug rise, eruption, and conduit refill. Each water jet of an eruption is marked by an initial pulse of liquid water and vapor, emitted at a velocity between 5 and 28 m/s and generally followed by a second pulse less than a second later. The timing of eruptions coincides with temperature maxima in the conduit. After the eruption, the conduit is refilled by water falling back in the pool and drained from neighboring groundwater‐saturated geological units. This results in a temperature drop, the amplitude of which increases with depth while its period is reduced. This reflects faster heat transfer in the deeper than shallower part of the conduit. The amplitude of temperature drop following an eruption also increases with the eruption order, implying larger heat release by higher‐order eruptions. Temperature in the conduit subsequently increases until the next eruption, starting then a new cycle.
Funder
HORIZON EUROPE Marie Sklodowska-Curie Actions
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献