Geophysical‐Geochemical Modeling of Deep Crustal Compositions: Examples of Continental Crust in Typical Tectonic Settings and North China Craton

Author:

Cui Dan‐Dan1,Guo Jing‐Liang1ORCID,Shinevar William J.2ORCID,Guo Liang1ORCID,Xu Wang‐Chun1,Zhang Hong‐Fei1,Jin Zhen‐Min1

Affiliation:

1. State Key Laboratory of Geological Processes and Mineral Resources School of Earth Sciences China University of Geosciences Wuhan China

2. Department of Geological Sciences University of Colorado Boulder Boulder CO USA

Abstract

AbstractThe chemical composition of the deep continental crust is key to understanding the formation and evolution of the continental crust. Constraining the chemical composition of present‐day deep continental crust is, however, limited by indirect accessibility. This paper presents a modeling method for constraining deep crustal chemical structures from observed crustal seismic structures. We compiled a set of published composition models for the continental crust to construct functional relationships between seismic wave speed and major oxide content in the crust. Phase equilibria and compressional wave speeds (VP) for each composition model were calculated over a range of depths and temperatures of the deep crust. For conditions within the alpha(α)‐quartz stability field, robust functional relationships were obtained between VP and major oxide contents of the crust. Based on these relationships, observed VP of the deep crust can be inverted to chemical compositions for regions with given geotherms. We provide a MATLAB code for this process (CalcCrustComp). We apply this method to constrain compositions from deep crustal VP of global typical tectonic settings and the North China Craton (NCC). Our modeling results suggest that the lower crust in subduction‐related and rifting‐related tectonic settings may be more mafic than platforms/shields and orogens. The low VP signature in the deep crust of the NCC can be explained by intermediate crustal compositions, higher water contents, and/or higher temperatures. The chemical structure obtained by this method can serve as a reference model to further identify deep crustal features.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Higher Education Discipline Innovation Project

State Key Laboratory of Geological Processes and Mineral Resources

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3