High‐Resolution InSAR Reveals Localized Pre‐Eruptive Deformation Inside the Crater of Agung Volcano, Indonesia

Author:

Bemelmans M. J. W.12ORCID,Biggs J.12ORCID,Poland M.3ORCID,Wookey J.1ORCID,Ebmeier S. K.24ORCID,Diefenbach A. K.5ORCID,Syahbana D.6ORCID

Affiliation:

1. School of Earth Sciences University of Bristol Bristol UK

2. COMET: Centre for Observation and Modelling of Earthquakes, Volcanoes, and Tectonics Nottingham UK

3. U.S. Geological Survey Cascades Volcano Observatory Vancouver WA USA

4. School of the Environment University of Leeds Leeds UK

5. U.S. Geological Survey Volcano Disaster Assistance Program (VDAP) Vancouver WA USA

6. Center of Volcanology and Geological Hazard Mitigation Kota Bandung Indonesia

Abstract

AbstractDuring a volcanic crisis, high‐rate, localized deformation can indicate magma close to the surface, with important implications for eruption forecasting. However, only a few such examples have been reported, because frequent, dense monitoring is needed. High‐resolution Synthetic Aperture Radar (SAR) is capable of achieving <1 m spatial resolution and sub‐weekly revisit times, but is under‐used. Here we use high‐resolution satellite SAR imagery from COSMO‐SkyMed, TerraSAR‐X, and Sentinel‐1 to detect intra‐crater uplift preceding the November 2017 onset of eruptive activity at Agung, Indonesia. Processing the SAR imagery with an up‐to‐date, accurate, high‐resolution digital elevation model was crucial for preventing aliasing of the deformation signal and for accurate georeferencing. We show that >15 cm of line‐of‐sight shortening occurred over a 400‐by‐400 m area on the crater floor in September‐October 2017, accompanying a deep seismic swarm and flank dyke intrusion. We attribute the deformation to the pressurization of a shallow (<200 m deep) hydrothermal system by the injection of magmatic gases and fluids. We also observe a second pulse of intra‐crater deformation of 3–5 cm within 4 days to 11 hr prior to the first phreatomagmatic eruption, which is consistent with interaction between the hydrothermal system and the ascending magma. This phreatomagmatic eruption created the central pathway used during the final stages of magma ascent. Our observations have important implications for understanding unrest and eruption forecasting, and demonstrate the potential of monitoring with high‐resolution SAR.

Funder

Natural Environment Research Council

Horizon 2020 Framework Programme

Leverhulme Trust

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3