Microscale Spatial Variations in Coseismic Temperature Rise on Hematite Fault Mirrors in the Wasatch Fault Damage Zone

Author:

McDermott Robert G.12ORCID,Ault Alexis K.2ORCID,Wetzel Kelsey F.2,Evans James P.2ORCID,Shen Fen‐Ann3ORCID

Affiliation:

1. U.S. Geological Survey Alaska Science Center AK Anchorage USA

2. Department of Geosciences Utah State University UT Logan USA

3. Microscopy Core Facility Utah State University UT Logan USA

Abstract

AbstractCoseismic temperature rise activates fault dynamic weakening that promotes earthquake rupture propagation. The spatial scales over which peak temperatures vary on slip surfaces are challenging to identify in the rock record. We present microstructural observations and electron backscatter diffraction data from three small‐displacement hematite‐coated fault mirrors (FMs) in the Wasatch fault damage zone, Utah, to evaluate relations between fault properties, strain localization, temperature rise, and weakening mechanisms during FM development. Millimeter‐ to cm‐thick, matrix‐supported, hematite‐cemented breccia is cut by ∼25–200 μm‐thick, texturally heterogeneous veins that form the hematite FM volume (FMV). Grain morphologies and textures vary with FMV thickness over μm to mm lengthscales. Cataclasite grades to ultracataclasite where FMV thickness is greatest. Thinner FMVs and geometric asperities are characterized by particles with subgrains, serrated grain boundaries, and(or) low‐strain polygonal grains that increase in size with proximity to the FM surface. Comparison to prior hematite deformation experiments suggests FM temperatures broadly range from ≥400°C to ≥800–1100°C, compatible with observed coeval brittle and plastic deformation mechanisms, over sub‐mm scales on individual slip surfaces during seismic slip. We present a model of FM development by episodic hematite precipitation, fault reactivation, and strain localization, where the thickness of hematite veins controls the width of the deforming zones during subsequent fault slip, facilitating temperature rise and thermally activated weakening. Our data document intrasample coseismic temperatures, resultant deformation and dynamic weakening mechanisms, and the length scales over which these vary on slip surfaces.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3