Affiliation:
1. Department of Earth and Atmospheric Sciences Cornell University Ithaca NY USA
2. Earth and Planets Laboratory Carnegie Institution for Science Washington DC USA
Abstract
AbstractSeismic wave amplitudes have tremendous sensitivity to subduction structure; however, they are affected by attenuation, scattering and focusing, and have therefore been sparsely used compared with traveltimes. We measure and model teleseismic body wave amplitudes recorded at a dense broadband array in the Washington Cascades. These data show anomalous amplitude variations with complex azimuthal dependence at frequencies as low as 0.05 Hz, accompanied by significant multipathing. We demonstrate using spectral‐element numerical simulations that focusing of the teleseismic wavefield by the Juan de Fuca slab is responsible for some of the amplitude anomalies. The focusing effects can contaminate the apparent differential attenuation measurements and produce at least 20% of the inferred attenuation signal. Our results indicate that the amplitudes are sensitive to the subducting slab geometry and subduction structure, and can be used to refine seismic images. Ubiquitous and consistent amplitude anomalies are observed along the arc, suggesting that the Juan de Fuca slab may be continuous from Canada to northern California.
Funder
National Science Foundation
Publisher
American Geophysical Union (AGU)
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Geochemistry and Petrology,Geophysics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献